
ptg

Bruce Hyslop

PocketGuide
HTML
The

Ginormous knowledge, pocket-sized.

The HTML
PocketGuide

Here is your essential companion to HTML. The HTML Pocket Guide is a
valuable companion to creating standards-compliant markup that will help
Web designers and developers quickly define content and meaning. The
HTML Pocket Guide:

■ Covers all elements in HTML 4, XHTML 1, and HTML5.

■ Teaches you when—and explains why and how—to use each element
and attribute.

■ Provides code examples that demonstrate common uses and best practices.

■ Shows how to build lean, semantic, accessible markup.

■ Details the changes in HTML5 to X/HTML elements it inherits.

■ Notes deprecated or obsolete elements and attributes and what to
use instead.

■ Tells you how to start using HTML5 today.

Plus, visit the support site at www.htmlfiver.com/html-pocket-guide/ for
additional coverage, code examples, HTML templates you may use, and more.

ISBN-13:
ISBN-10:

978-0-321-69974-9
0-321-69974-2

9 7 8 0 3 2 1 6 9 9 7 4 9

5 1 4 9 9

US $14.99 CAN $17.99

B O O K L E V E L

beginning

intermediate

 advanced

Peachpit Press
www.peachpit.com Cover Design: Peachpit Press

Computer Book Shelf Category: HTML

Covers: Elements and attributes in HTML 4,
XHTML 1, and HTML5

Covers
HTML5

elementsin depth

PocketG
uide

Hyslop

The HTM
L

ptg

The HTML
PocketGuide

BruceHyslop

Ginormous knowledge, pocket-sized.

ptg

The HTML Pocket Guide
Bruce Hyslop
Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com

Peachpit Press is a division of Pearson Education.
Copyright © 2010 by Bruce Hyslop

Executive Editor: Clifford Colby
Editor: Kim Wimpsett
Technical Editor: Michael Bester
Production Editor: Tracey Croom
Compositor: David Van Ness
Indexer: James Minkin
Cover Design: Peachpit Press
Interior Design: Peachpit Press

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form
by any means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written permission of the publisher. For information on getting permission
for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis without warranty. While
every precaution has been taken in the preparation of the book, neither the author
nor Peachpit shall have any liability to any person or entity with respect to any loss or
damage caused or alleged to be caused directly or indirectly by the instructions con-
tained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their prod-
ucts are claimed as trademarks. Where those designations appear in this book, and
Peachpit was aware of a trademark claim, the designations appear as requested by the
owner of the trademark. All other product names and services identified throughout
this book are used in editorial fashion only and for the benefit of such companies with
no intention of infringement of the trademark. No such use, or the use of any trade
name, is intended to convey endorsement or other affiliation with this book.

ISBN-13: 978-0-321-69974-9
ISBN-10: 0-321-69974-2

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

www.peachpit.com

ptg

To Mom and Dad, and your nearly 45 years of marriage.

To Merri, my birthday mate; you are greatly missed.

About the Author
Bruce Hyslop has 13 years of experience in Web development, with a
focus on interface technical architecture and development. He is the
senior director of the Interface Engineering Group (IEG) at Schematic, an
interactive agency based in the United States. In this role, Bruce oversees
companywide efforts to define and implement best practices regarding
HTML, CSS, JavaScript, and accessibility wherever they may be applied:
the browser, desktop, mobile devices, and emerging platforms.

An early adopter of Web standards, Bruce has helmed IEG for more than
120 projects, including clients such as ABC, BBC, Dell, Logitech, Microsoft,
NBC Universal, Nokia, and Target, among others. In addition to his develop-
ment and writing efforts, Bruce teaches a CSS course at UCLA Extension.

ptg

Acknowledgments
First I’d like to say a very grateful thank you to Nancy Davis and Cliff Colby
for the opportunity and for your continued patience and support, of which
I’m very appreciative.

A most sincere thank-you goes out to Nicole Neopolitan and Patrick Ty.
I could not possibly have done this without your support.

Thank you, Kim and Michael, for all your editing suggestions and
improvements and for catching my errors. It was always very comforting
to know you’d be reviewing my words with care and experienced eyes.

Thank you, Charlene Will, Tracey Croom, Cory Borman, and David Van Ness,
for taking great care in the design and being such a pleasure with which
to work.

Thank you, James Minkin, (from me and on behalf of our readers!) for
indexing the content .

Thank you, everyone at Peachpit with whom I didn’t have an opportunity
to work with directly but who contributed to the book’s efforts and will
continue to do so.

Thank you to my fellow IEGers at Schematic for their continued inspira-
tion, and to Michael Roldan, Tommy Ly, Karen Lauritsen, Scott Hutchinson,
and Robert Reinhardt.

Last, but certainly not least, a special acknowledgment to those of you
who were particularly neglected while I wrote this. You often inspired me
in quiet but profound ways. I have a lot of catching up to do!

ptg

Contents

Introductionvii

Part 1:  HTML Basics1

Chapter 1: HTML Basics3

Part 2:  HTML Elements and Guidance25

Chapter 2: Primary Structure and Sections . ..27

Chapter 3: Document Head . 43

Chapter 4: Lists . ..69

Chapter 5: Text93

Chapter 6: Embedded Content (Images and Objects)141

Chapter 7: Forms ...157

Chapter 8: Tabular Data . ..185

Chapter 9: Scripting ...203

Chapter 10: Frames. ...213

ptg

The HTML Pocket Guidevi

Part 3:  HTML5 Elements and Guidance 221

Chapter 11: Primary Structure and Sections 223

Chapter 12: Text245

Chapter 13: Embedded Content
(Images, Media, and More). ..263

Chapter 14: Forms 277

Chapter 15: Interactive Elements . ..285

Appendix: Alphabetical HTML Elements Page Listing 294

Index 296

ptg

The HTML Pocket Guide

Welcome to the HTML Pocket Guide! I’m excited you’re here.

HTML—the humble markup language that helped spur a new era
of information sharing two decades ago—is hotter than ever today
with the emergence of HTML5. So, now is a great time to either learn
about HTML for the first time or be sure you’re on top of the latest
developments.

In this introduction, I summarize what you can expect to learn, whom
the book targets, how information is presented, and where you can learn
more.

Introduction

ptg

The HTML Pocket Guideviii

What You Will Learn
The focus of this book is to help you learn about

n Elements and attributes in HTML 4, XHTML 1, and HTML5

n Differences between these HTML versions

n Current Web standards–based best practices regarding HTML usage

n What to use instead of deprecated attributes

Who This Book Is For
This book is suitable for developers and designers of all skill levels who
want to learn about HTML and for those who want a handy, informative
HTML reference at the ready. Those of you who have X/HTML down pat
will be interested in its detailed coverage of all the HTML5 elements.

How to Read This Book
This book is structured to allow you to read it either sequentially (espe-
cially Parts 2 and 3) or jump to a particular topic for quick access to
specific answers. The book has three parts:

n Part 1 covers an HTML5 overview, HTML fundamentals, and common
attributes and data types referred to by Parts 2 and 3.

n Part 2 provides in-depth coverage of all HTML elements and their attri-
butes except those unique to HTML5. It also explains differences for
some of these elements when used in HTML5. All of this information is
in a reference-style format that includes code examples and explana-
tions concerning how and when to use the elements and attributes.

n Part 3 has the same format, except it focuses on elements unique to
HTML5. In that sense, it’s like a book within the book, which is espe-
cially convenient if your main goal is to get up to speed on the new
elements in HTML5.

ptg

The HTML Pocket Guide Introduction ix

Support Site
I have also created a support site that will continue to grow after the book’s
release. It’s located at http://www.htmlfiver.com/html-pocket-guide/ and
includes additional coverage, code examples, a list of the links referenced
in the book, and errata. Among the code examples are several sample
HTML templates that demonstrate how to use a variety of the elements
described in Parts 2 and 3 together in completed pages. I also welcome
feedback so we can make the next version of the book even better.

Conventions Used in This Book
This book uses several conventions for the code, attributes, and terminology.

Code
Most code examples follow XHTML Strict syntax (which is appropriate
both for XHTML and for HTML5), with the occasional example in Part 3
including unterminated empty elements to demonstrate HTML5’s flex-
ibility. (Please see “An HTML5 Overview” in Chapter 1.)

Inline code and code blocks share the same font treatment; portions
particularly requiring your attention are highlighted. An arrow indicates
code that is wrapped for display purposes at an “unnatural” point and
that you should type on a single line in your HTML instead.

Example:

<p>Oooooh, I want to ride on <a href="http://en.wikipedia.

➥ org/wiki/File:Whalom_comet_enter.jpg" title="Flyer Comet">

➥ that roller coaster!</p>

Code rendered in a browser, when not shown with a screen shot, appears
like this:

Oooooh, I want to ride on that roller coaster!

http://www.htmlfiver.com/html-pocket-guide/

ptg

The HTML Pocket Guidex

Attributes
I indicate an element’s attributes in a particular manner throughout the
book. Please see “How Attributes Are Noted in This Book” in Chapter 1 for
details.

Terminology
I use these terms throughout the book:

n HTML refers to the markup language in general, covering HTML 4.01,
XHTML 1, HTML5, and XHTML5.

n HTML 4 refers to HTML 4.01.

n XHTML refers to XHTML 1.

n X/HTML refers to both HTML 4.01 and XHTML 1. (You’ll often see this
represented as (X)HTML in other resources.)

n HTML5 refers to HTML5 (and with a nod to XHTML5), specifically the
HTML5 Working Draft of April 26, 2010, that is still under development
at the time of this writing.

n User agent and browser are used mostly interchangeably; though,
technically, a browser is a user agent, the reverse isn’t necessarily true
(for instance, screen readers and search engine spiders are also user
agents).

n In the context of HTML, document means the same thing as page (such
as, “When the browser loads the page . . .”). It’s just a more formal term.

I hope you enjoy the book!

ptg

Part 1

This part of the book contains one chapter, “HTML Basics,” which provides
an overview of HTML5, discusses the versions of HTML, recommends
some best practices, lists common attributes, and more.

HTML Basics

ptg

Part 1 Contents

Chapter 1: HTML Basics . . .3

ptg

This chapter provides foundational information for Parts 2 and 3 of the
book. (If you’ve been around HTML for awhile, much of it will be old hat.)

I cover a few standards-based best practices, basic HTML document struc-
ture for all flavors of the language (including HTML5), differences among
the versions, DOCTYPEs, basic data types, common attributes, a note
about obsolete and deprecated items, and more.

note I encourage all readers to review the “How Attributes Are Noted in
This Book” box.

Let’s begin with an overview of HTML5 in case this version of HTML is
new to you.

HTML Basics

1

ptg

Part 1: HTML Basics4

An HTML5 Overview
HTML5 is a natural evolution of HTML 4 that accounts for the rapid
growth of media, rich online experiences, and sophisticated Web applica-
tion development since HTML 4.01 became a specification at the end of
1999.

At the time of this writing, HTML5 is still under development and
subject to change. However, it is on stable footing, and browsers have
already added many—and continue to add more—of its features.
(Please see http://www.htmlfiver.com/html5-browser-support/ for more
information.)

This book includes information from the HTML5 editor’s Working Draft
dated April 26, 2010. Here are some key links so you can keep up with
HTML5’s progress:

n W3C Working Draft: http://www.w3.org/TR/html5/.

n Latest editor’s Working Draft (typically more recent): http://www.
whatwg.org/specs/web-apps/current-work/multipage/.

n HTML, The Markup Language: http://www.w3.org/TR/html-markup/.
This briefly summarizes each HTML5 element and attribute.

n HTML5 differences from HTML4: http://www.w3.org/TR/html5-diff/.

Snapshot View
HTML5 breaks down like this:

n New elements and attributes: HTML5 inherits nearly every element
from HTML 4 (please see Part 2 of the book). It also includes nearly 30
new elements, all of which I detail in Part 3 of the book. Highlights
include audio, video, canvas, datalist, and a whole host of new

http://www.htmlfiver.com/html5-browser-support/
http://www.w3.org/TR/html5/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://www.w3.org/TR/html-markup/
http://www.w3.org/TR/html5-diff/

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 5

semantics such as article, nav, header, and footer. As discussed in
Chapter 7, HTML5 also includes big advancements in the forms depart-
ment with new attributes and input types that make rich forms easier
to develop, more accessible, and more consistent for users and that
can validate in the browser without JavaScript.

n New features: Features is a bit of a broad term, but it mostly speaks
to new functionality in HTML5 and related in-progress specs that fall
under HTML5 from a “marketing” sense, if not literally part of HTML5.
(Aside from the occasional coverage, this book leaves in-depth discus-
sions of the new features for another day.) Some of these features are:

– Canvas (via the aforementioned canvas element)

– Cross-document messaging

– Drag and drop

– Embedding of Scalable Vector Graphics (SVG) directly in HTML

– Geolocation

– History (browser) management

– Microdata

– Native media playback scripting (via the aforementioned audio and
video elements)

– Offline Web Applications

– Web Storage (aka DOM storage)

– Web Workers

Code Formatting Syntax: A Recommendation
HTML5 is extremely forgiving concerning how you may structure the
code. You may include or omit closing tags, use uppercase or lowercase
elements and attributes, quote or not quote attribute values, and more.
That flexibility has been the source of some controversy, but it remains.

ptg

Part 1: HTML Basics6

Having said that, my recommendation is to code HTML5 in either one of
these two ways:

n Use all lowercase for code, double-quote all attribute values, use attri-
bute minimization, always use an element’s end tag if it has one, and
don’t terminate elements that don’t have an end tag (that is, empty or
void elements).

n

Or, use XHTML syntax, which is exactly the same as the previous bullet,
except you don't use attribute minimization and do terminate empty
elements. Yes, HTML5 accepts XHTML syntax.

All the code examples in this book conform to one of these (mostly the
second) so you can get a sense of how to replicate them if you’re new
to coding. (Please see "Differences Between HTML 4 and XHTML" later in
this chapter for explanations of attribute minimization and terminating
empty elements. Their descriptions are relevant to HTML5 usage, too.)

note Why do I recommend following one of these formats? I elaborate a bit
on this at http://www.htmlfiver.com/extras/html5-code-syntax/, but

the short answer is they’re in line with the way seasoned developers and
designers have coded for the better part of the past decade as a result of the
Web standards movement. So, these syntax formats will become de facto
HTML5 coding standards, in my view, if they aren’t already.

note Unlike HTML5, XHTML5 syntax does have firm rules, just like XHTML 1.
However, unlike XHTML 1, an XHTML5 page must be served with an

XML MIME type, and if there is a single invalid portion of code, the page won’t
render. For this reason, HTML5 will have widespread use, while XHTML5 will
likely find a limited audience.

How to Style New Elements
Although it's true that you can't use HTML5 features such as the addi-
tional input types and the details element unless a browser supports their
behavior, you can use the new semantic elements such as article, aside,

http://www.htmlfiver.com/extras/html5-code-syntax/

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 7

nav and most of the others right away. Plus, with just a little extra help,
most browsers allow you to style them even when they don't yet support
them natively. I've detailed the three easy steps required to style these
elements at http://www.htmlfiver.com/extras/style-html5-elements/.

So, that’s a bird’s eye view of HTML5. Please dig into Parts 2 and 3 to
learn the nitty-gritty concerning HTML5 element usage, and visit http://
www.htmlfiver.com/using-html5-today/ to learn more about what you
can use in HTML5 today.

A Few Best Practices
I could easily dedicate chapters to Web standards and best practices but
have synthesized them into these key points:

n Always use a DOCTYPE: A DOCTYPE tells the browser what mode in
which to render, improves interoperability, and makes your life a heck
of a lot easier when developing and debugging your code. Please see
the “DOCTYPEs” section for more information.

n Separate content, presentation, and behavior: Along with the next
item, this is one of the key tenets of Web standards. Separation of
content (HTML), presentation (CSS), and behavior (JavaScript) means
not intermingling them in the HTML. Usually it’s best to place your CSS
and JavaScript in separate files and load them into your pages. Among
other benefits, this makes development, reusability, and maintenance
far easier. (Make one CSS or JavaScript update, and it can spill across
your whole site.)

n Use proper semantics: This refers to wrapping your content with the
HTML element(s) that best reflects the nature of the content. For exam-
ple, put each paragraph of text in a paragraph element (<p></p>). Place
a list of items in a definition list (<dl></dl>), ordered list (), or

http://www.htmlfiver.com/extras/style-html5-elements/
http://www.htmlfiver.com/using-html5-today/
http://www.htmlfiver.com/using-html5-today/

ptg

Part 1: HTML Basics8

unordered list () as is most appropriate; it’s the same principle
for other types of content and their related elements. This improves
accessibility, improves search engine optimization (SEO), tends to make
pages lighter, and usually makes styling with CSS easier as well.

n Validate your pages: HTML validators check your code for syntax errors.
By validating your pages, you’ll be sure they’re in compliance with
their DOCTYPE. This helps you create more consistent code and track
down the occasional nettlesome bug. Validate your X/HTML pages
at http://validator.w3.org/ and your HTML5 pages there or at http://
html5.validator.nu/ to receive the kind of personal validation and satis-
faction that only an automated program can provide!

Basic HTML Document Structure
No matter what flavor of HTML you’re writing—HTML 4, XHTML 1, or
HTML5—the basic structure remains the same. Only a few of the details
are different. Let’s take a look.

Example 1 (a typical XHTML 1 Strict page):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

<title>Your document title</title>

<meta http-equiv="Content-type" content="text/html;

charset=utf-8" />

</head>

<body>

. . . [your page content] . . .

http://validator.w3.org/
http://html5.validator.nu/
http://html5.validator.nu/

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 9

</body>

</html>

I’ve highlighted the portions that change from one version of the
language to another. They are as follows:

n The DOCTYPE: Include a DOCTYPE in every page. See the “DOCTYPEs”
section in this chapter for more information, including a list of avail-
able DOCTYPEs.

n The html element: This is simply <html lang="en"> for HTML 4 and
HTML5 documents, where lang is customized accordingly to fit the
language of your page content. (Please see “Language Codes” in this
chapter.) English is specified in the example.

n The meta element that includes the character encoding: An HTML 4
document doesn’t have the trailing slash (/>). An HTML5 document may
have the trailing slash if you’d like but is otherwise simplified to <meta
charset="utf-8">, assuming the encoding is UTF-8. It’s also preferable
to put it before the title. (See the meta element in Chapter 3.)

For comparison, Example 2 shows a typical HTML5 document.

Example 2:

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="utf-8" />

<title>Your document title</title>

</head>

<body>

. . . [your page content] . . .

</body>

</html>

ptg

Part 1: HTML Basics10

Differences Between HTML 4
and XHTML
In addition to the basic structural differences just discussed, there are a
number of other differences between HTML 4 and XHTML 1 (they’re true of
XHTML5, too). They’re all easy to get a handle on; this section of the XHTML 1
spec summarizes them nicely: http://www.w3.org/TR/xhtml1/#diffs.

I do want to call out two of the key differences, though, since you’ll come
across them frequently in Parts 2 and 3 of the book:

n Terminate empty elements: Some elements are classified as empty
elements (also called void). An empty element is one that can’t contain
content, so it doesn’t have an end tag. Examples are and
. In
XHTML, empty elements must be self-closing, which is simply a matter
of ending them with />, as in and
. Most of my code
samples throughout the book use XHTML syntax (which is also valid
in HTML5), but you will see notes such as “<area> or <area />” in the
summary of relevant elements as a reminder of the two formats.

n An attribute must have a value (even Booleans): Some attributes
don’t have a value, like the selected attribute on <option selected>
</option>. This syntax is referred to as attribute minimization. Most
of these are Boolean attributes, meaning that if they are present, the
condition is true (the option is selected), and if they aren’t, it is false.
XHTML documents don’t allow attribute minimization, so you simply
assign the name of the attribute as the attribute value, making the
example become <option selected="selected"></option>. (Note that
HTML5 allows either selected, selected="", or selected="selected",
all of which browsers should treat the same way.)

tip Please also see “Code Formatting Syntax: A Recommendation” earlier
in this chapter.

http://www.w3.org/TR/xhtml1/#diffs

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 11

Differences Between HTML 4
and HTML5
Some elements are different when used in HTML 4 or XHTML 1 docu-
ments versus in HTML5. I detail these differences throughout Part 2 of
the book. Please see the introduction to Part 2 regarding how I typically
convey that information. I also recommend you refer to the handy W3C
summary at http://www.w3.org/TR/html5-diff/.

tip Please also see “Code Formatting Syntax: A Recommendation” earlier
in this chapter.

DOCTYPEs
 HTML comes in a few flavors, as dictated by a page’s DOCTYPE (always

include one in your documents!). This section includes a reference of the
available DOCTYPES and a brief summary of what each allows.

Standards-savvy developers and designers have tended to use XHTML 1
Strict or Transitional and, in some cases, HTML 4.01 Strict. However, you can
use the HTML5 DOCTYPE today, and your pages will work as expected (that
doesn’t mean all of HTML5’s new elements will work since that depends
on the browser, but you can code your pages as you normally would
otherwise).

HTML 4.01 Strict
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

Deprecated elements and attributes, frames, and the target attribute on
links are not allowed.

http://www.w3.org/TR/html5-diff/

ptg

Part 1: HTML Basics12

HTML 4.01 Transitional (aka Loose)
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

Deprecated elements and attributes are allowed.

HTML 4.01 Frameset
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"

"http://www.w3.org/TR/html4/frameset.dtd">

A variant of HTML 4.01 Transitional that is used for frames only.

HTML5 and XHTML5
<!DOCTYPE html>

Used for all HTML5 documents.

XHTML 1 Strict
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

You must follow XHTML syntax rules; plus, deprecated elements and
attributes, frames, and the target attribute on links are not allowed.

XHTML 1 Transitional
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

You must follow XHTML syntax rules. Deprecated elements and attri-
butes are allowed.

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 13

XHTML 1 Frameset
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

A variant of XHTML 1 Transitional used for frames only.

XHTML 1.1
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Equal to XHTML 1 Strict but allows you to include additional modules.

Inline vs. Block-level Elements
A block-level element may contain most other block-level elements and all
inline elements. Inline elements mostly describe brief strings of text and
may include other inline elements. For instance, the p element is a block-
level element, and the em element is inline: <p>This is a great
example!</p>. Block-level elements occupy at least one full line when
rendering, while inline elements take up only as much space as their
content requires. This default behavior may be overridden with the CSS
display property.

HTML5 doesn’t use the terms block-level and inline, though its elements
do render by default in one of the two ways. Please see “Content models”
at http://www.w3.org/TR/html5/dom.html#content-models for details.

HTML Comments
HTML comments don't render in the page, just in the code. They must
start with <!-- and end with --> and they may cover several lines of
code. I recommend commenting at least the beginning and end of major
sections of your pages to make your code easier to read.

http://www.w3.org/TR/html5/dom.html#content-models

ptg

Part 1: HTML Basics14

Attributes
An HTML element’s attribute defines a property of that element. They are
optional in most cases, so use them only as needed. For example, here
you see both the href and title attributes applied to a hyperlink:

<p>They saw a <a href="ducks.html" title="Essay and

photos">family of ducks by the stream.</p>

You may place attributes in any order you like, but I encourage you to be
consistent in your approach in order to make your code easier to read
and manage.

I’ll detail common attributes in just a bit, but first please indulge me as I
explain how attributes are noted in this book.

How Attributes Are Noted
in This Book

Many HTML elements share the same attributes. The X/HTML speci-
fications use the terms Core, I18n, and Events to categorize these.
(Core consists of mostly unrelated common attributes, I18n consists
of the internationalization-related attributes, and Events are the
event-related attributes.) Meanwhile, HTML5 uses one term only,
Global, which represents all the Core, I18n, and Events attributes
from X/HTML plus a bunch just for HTML5. (I explain each of these
attribute groupings in detail after this box.)

I use these terms throughout Parts 2 and 3 of the book. Namely, the
beginning of each HTML element entry includes a list of its attri-
butes in this format:

Attributes Core, I18n, Events, accesskey, alt, href, nohref*, shape,
HTML5 Only: Global, hreflang, media, ping

(continues on next page)

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 15

How Attributes Are Noted
in This Book (continued)

An “Attributes in Detail” section that details their usage appears
toward the end of an HTML element’s entry.

So, in this example, the element supports all the Core, I18n, Events,
and (in HTML5 only) Global attributes. In addition, the attributes
listed by name (accesskey, alt, href, nohref*, shape, hreflang, media,
and ping) are custom attributes that the element supports, depend-
ing on the version of HTML. In case it’s not clear, all attributes prior
to HTML5 Only apply to HTML 4, XHTML 1, and HTML5 (except when
noted otherwise in “Attributes in Detail”), and all attributes after
HTML5 Only apply to HTML5 only, as you would expect.

If an attribute has an asterisk, as nohref does in the example, then
that indicates an exception is noted in “Attributes in Detail.” For
instance, it might say this: nohref: *Obsolete in HTML5.

note The

accesskey and tabindex attributes are shared by a handful of
elements in X/HTML though are not part of the Core, I18n, or Events

attribute groupings. They are part of HTML5’s Global attributes, though, so
please find their descriptions in that section. The same definitions apply to their
use in X/HTML documents.

OK, let’s look at the attribute groupings.

Core
These attributes are both part of X/HTML’s Core group and HTML5’s
Global group of common attributes:

n class="class names": Use this to assign one or more space-separated
class names to an element for styling or scripting purposes. You may

ptg

Part 1: HTML Basics16

define your own class names, such as <p class="news synopsis">. . .
</p>. A class may be repeated in a page, whether it’s to the same or
different element types.

n id="unique identifier": This assigns a unique ID for functional, styling,
and scripting purposes. It may not be repeated within the same page.

n style="inline style sheet": This assigns inline CSS to an element. Avoid
using this whenever possible since it is a best practice not to mix your
presentation (CSS) and content (HTML).

n title="descriptive text": This provides a short description that doesn’t
appear on-screen, though most browsers render it as a tooltip when
the mouse or other pointer is hovered on the element. Screen readers
may announce the text as well.

I18n (Internationalization)
These two attributes allow you to specify the language and direction of
text in your document.

n dir="ltr|rtl": This specifies the base directionality of the element’s
text content and tables. Typically, you don’t need to set it anywhere
on your page since the default is ltr (left-to-right). However, if your
content’s base directionality is right-to-left, such as in Hebrew, set
<html . . . dir="rtl" lang="he"> (sans ellipses) so the rest of the
page inherits the setting. (Note: You should specify lang, too, as
shown, but user agents don’t determine text directionality from that).
If you are intermingling left-to-right and right-to-left content, such as
English and Arabic, respectively, set dir and lang on the element (a
paragraph, for instance) that contains the content that deviates from
the directionality of the page at large. Please also see the bdo element
in Chapter 5 for a related discussion.

n lang="language code": This specifies the language of the element’s
content. Be sure to always set it on the html element; elements on

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 17

the rest of the page inherit that value unless you override it at a more
granular level. For instance, set <html . . . lang="en"> (sans ellipses)
on a document in English. If a paragraph within that same page is
in French, set <p lang="fr"> . . . </p> to override it. Please see the
“Language Codes” section of this chapter to access more codes.

Events
These common event attributes allow you to assign JavaScript to a
range of page behaviors. As a best practice, don’t apply these attributes
to your HTML inline as you do with other attributes. Meaning, avoid
this: <a href="some-page.html" onclick="someFunction(); return
false">link text. Instead, use JavaScript to apply them unobtru-
sively; this is in keeping with the separation of content and behavior best
practice described in “A Few Best Practices” earlier in this chapter. Search
online for unobtrusive JavaScript to learn more and see code examples.

n onclick="script": Event fires when the user clicks a mouse button or
hits Return or Enter on the keyboard. (Mouse means pointing device for
each event in this list.)

n ondblclick="script": Event fires when the user double-clicks a mouse
button.

n onmousedown="script": Event fires when the user holds the mouse
button down. This is the opposite of onmouseup.

n onmouseup="script": Event fires when the user releases the mouse
button. This is the opposite of onmousedown.

n onmouseover="script": Event fires when the user moves the mouse
cursor on top of an element. This is the opposite of onmouseout.

n onmousemove="script": Event fires when the user moves the mouse
cursor.

ptg

Part 1: HTML Basics18

n onmouseout="script": Event fires when the user moves the mouse
cursor away from an item. This is the opposite of onmouseover.

n onkeypress="script": Event fires when the user presses and releases a
key.

n onkeydown="script": Event fires when the user presses down on a key.
This is the opposite of onkeyup.

n onkeyup="script": Event fires when the user releases a key. This is the
opposite of onkeydown.

Global (HTML5)
As discussed in the “How Attributes Are Noted in This Book” box, the
attributes that HTML5 classifies as Global include X/HTML’s Core, I18n,
and Events, plus the unique ones listed here. The Global attributes may
be applied to nearly every element in HTML5.

n accesskey="keyboard character": (Note: Some X/HTML elements
support tabindex, as noted in their entries in Part 2 of the book.)
This attribute assigns a character as a shortcut to setting focus on an
element, as in <input type="text" name="search" accesskey="4" />.
Browsers and platforms vary on what key or keys you must press in
combination with the accesskey to activate it. While pressing Ctrl plus
the accesskey on a Mac typically activates the shortcut, on a Windows
computer it’s Alt for Internet Explorer and Chrome, Shift+Alt for Firefox,
and Shift+Esc for Opera. Behavior varies per element and browser. See
http://www.webaim.org/techniques/keyboard/accesskey.php for more
information, including reasons why it hasn’t gained wider adoption.

n class: Please see the description in the “Core” section.

n contenteditable="true|false": HTML5 allows users to edit an
element’s content if the element has contenteditable="true". If
contenteditable is not set, an element inherits the value from its

http://www.webaim.org/techniques/keyboard/accesskey.php

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 19

nearest parent. A setting of false prevents an element from being
edited. The default state is to inherit. For more information, see
http://blog.whatwg.org/the-road-to-html-5-contenteditable and a
demo at http://html5demos.com/contenteditable.

n contextmenu="id of menu": This assigns the element’s context
menu when its value matches the id of a menu element (please see
Chapter 15).

n dir: Please see the description in the “I18n” section.

n draggable="true|false": HTML5 provides a drag and drop API. Set
draggable="true" on an element to make it draggable (false does
the opposite). If draggable is undefined, the default state is auto,
which defers to the default state of the user agent.

n hidden: When present, this Boolean attribute “indicates that the
element is not yet, or is no longer, relevant,” and user agents shouldn’t
show the content. It affects presentation only; scripts and form
controls in hidden content still work.

n id: Please see the description in the “Core” section.

n itemid, itemprop, itemref, itemscope, and itemtype: These attributes
are related to defining microdata. Please see http://dev.w3.org/html5/md/.

n lang: Please see the description in the “I18n” section.

n spellcheck="true|false": Set spellcheck="true" on an element
whose content should have its spelling and grammar checked (false
does the opposite). HTML5 suggests the default state could be for
the element to inherit the setting of its parent but doesn’t define it
outright. It also doesn’t define how a user agent should perform spell-
and grammar-checking.

n style: Please see the description in the “Core” section.

http://blog.whatwg.org/the-road-to-html-5-contenteditable
http://html5demos.com/contenteditable
http://dev.w3.org/html5/md/

ptg

Part 1: HTML Basics20

n tabindex="number": (Note: Some X/HTML elements support
tabindex, as noted in their entries in Part 2 of the book.) Some users
prefer to navigate a page with the Tab key (and Shift+Tab to move
backward). Each time you press Tab in a supporting browser, the focus
shifts to the next a element (a hyperlink or anchor) or form control
according to the order in which it appears in the HTML source, not
necessarily the on-screen order (because of CSS moving it).

You may change the order by assigning a tabindex to an element,
such as Trees. Elements
with tabindex gain priority, so they are tabbed to first (1 is the high-
est priority) before any other elements, regardless of source order. The
numbers may be in any order or increment you’d like. The HTML source
order determines the priority of elements with the same number.
tabindex="0" has special meaning; it makes an element focusable by
keyboard but places it in the normal document tabbing sequence. Also,
tabindex on a disabled element has no effect since it can’t gain focus.

In HTML5, any negative number means you can’t tab to the element,
but you can set focus to it with JavaScript via focus(). Many browsers
apply this same behavior to X/HTML documents when tabindex="-1".

I strongly recommend you avoid using tabindex in most cases and
make your natural tabbing order logical for users.

n title: Please see the description in the “Core” section.

Data Attributes
Data attributes are another of HTML5’s particularly useful additions—
they’re custom attributes that you may apply to any element to store
data in your HTML. They are helpful in cases where another attribute or
element isn’t appropriate for containing the information. You may name
your attributes as you wish as long as they begin with data-. A data
attribute's value doesn’t appear in the page; instead, you leverage it with
JavaScript. For example, imagine your page includes a list of products

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 21

for males and females of all ages. By including data attributes, you could
write a script that sorts or filters the list based on the user’s choices.

Example:

<li data-gender=”female” data-agerange=”55-67”>Product Name</

➥ li>

You may add as many data attributes as necessary. For instance, the
example could include another one called data-pricerange. Best of all,
you can use data attributes today across browsers as long as your page
has an HTML5 DOCTYPE. Please see http://www.htmlfiver.com/data-attri-
butes/ for an example of how to access your custom data with JavaScript.

Events That Are Part of Global
The HTML5 Global attribute set includes the X/HTML Events attri-
butes. They are onclick, ondblclick, onkeydown, onkeypress, onkeyup,
onmousedown, onmousemove, onmouseout, onmouseover, and onmouseup.
Please see the “Events” section in this chapter for details. HTML5 also
includes the following event-related attributes as part of Global:

onabort, onblur*, oncanplay, oncanplaythrough, onchange,
oncontextmenu, ondrag, ondragend, ondragenter, ondragleave,
ondragover, ondragstart, ondrop, ondurationchange, onemptied,
onended, onerror*, onfocus*, onformchange, onforminput, oninput,
oninvalid, onload*, onloadeddata, onloadedmetadata, onloadstart,
onmousewheel, onpause, onplay, onplaying, onprogress, onratechange,
onreadystatechange, onscroll, onseeked, onseeking, onselect, onshow,
onstalled, onsubmit, onsuspend, ontimeupdate, onvolumechange, and
onwaiting

Those with an asterisk have a different meaning when applied to the
body element.

http://www.htmlfiver.com/data-attributes/
http://www.htmlfiver.com/data-attributes/

ptg

Part 1: HTML Basics22

Please see the input element in Chapter 7 for details about onblur and
onfocus. Descriptions for the others have been left out for space consider-
ations and because many go beyond the scope of this book (for instance,
many relate to scripting the audio and video elements). You can learn
more at http://www.w3.org/TR/html5/dom.html#global-attributes.

Basic Data Types
This section describes basic HTML data types referenced by elements in
Parts 2 and 3. Please also see http://www.w3.org/TR/html4/types.html.

CDATA, and id and name Attribute Values
The descriptions of many attributes indicate that CDATA is the accepted
value, as in name="cdata" for form inputs. CDATA, in these instances,
is a fancy name for a text string that accepts a variety of characters.
Specifically, for id, name, and other attributes that accept text, their value
“must begin with a letter ([A–Za–z]) and may be followed by any number
of letters, digits ([0-9]), hyphens (‘-’), underscores (‘_’), colons (‘:’), and
periods (‘.’).”

Character Encoding
The charset attribute defines the character encoding, such as what you
should define in the head element of each document (see “Basic HTML
Document Structure” earlier in this chapter and the meta element entry
in Chapter 3). Most commonly, charset is set to utf-8. The W3C provides
a thorough discussion on the topic at http://www.w3.org/International/
tutorials/tutorial-char-enc/.

Content Types (MIME Types)
A content type specifies the nature of a linked or embedded resource,
such as assigned to the type attribute of the link element that loads a

http://www.w3.org/TR/html5/dom.html#global-attributes
http://www.w3.org/TR/html4/types.html
http://www.w3.org/International/tutorials/tutorial-char-enc/
http://www.w3.org/International/tutorials/tutorial-char-enc/

ptg

Part 1: HTML Basics Chapter 1: HTML Basics 23

style sheet. Among the common content types are image/gif, image/png,
image/svg+xml, text/css, text/javascript, text/html, and video/mpeg.
A complete list of registered MIME types is available at http://www.
w3.org/TR/html4/references.html#ref-MIMETYPES.

Language Codes
A language code is assigned to the lang attribute to describe the
language of an element’s content, as in lang="dl" for Dutch. Please see
the “I18n” section of this chapter for more details about lang. Language
codes may have a subcode, too, as in cn-zh. Please see http://www.
anglistikguide.de/info/tools/languagecode.html for a list of codes.

Link Types
The defined X/HTML link types are alternate, stylesheet,
start*, next, prev, contents*, glossary*, copyright*, chapter*,
section*, subsection*, appendix*, help, and bookmark. Please see
http://www.w3.org/TR/html4/types.html#h-6.12 for descriptions.

HTML5 includes the ones not marked with an asterisk and also includes
these: archives, author, external, icon, license, nofollow, noreferrer,
pingback, prefetch, search, sidebar, tag, index, up, first, and last.
Please see http://www.w3.org/TR/html5/interactive-elements.html#
linkTypes for descriptions. Additionally, HTML5 allows you to define new
link types by defining them at http://wiki.whatwg.org/wiki/RelExtensions.

The a (Chapter 5), link (Chapter 3), and area (Chapter 6) elements use
link types.

Character Entities
A character entity represents a character in a document’s character set.
Some common character entities are & for an ampersand, for

http://www.w3.org/TR/html4/references.html#ref-MIMETYPES
http://www.w3.org/TR/html4/references.html#ref-MIMETYPES
http://www.anglistikguide.de/info/tools/languagecode.html
http://www.anglistikguide.de/info/tools/languagecode.html
http://www.w3.org/TR/html5/interactive-elements.html#linkTypes
http://www.w3.org/TR/html5/interactive-elements.html#linkTypes
http://wiki.whatwg.org/wiki/RelExtensions
http://www.w3.org/TR/html4/types.html#h-6.12

ptg

Part 1: HTML Basics24

a nonbreaking space, < for a less-than sign, > for a greater-than
sign, " for a straight quotation mark, ‘ for a curly opening
single quotation mark, ’ for a curly closing single quotation mark,
“ for a curly opening double quotation mark, and ” for a
curly closing double quotation mark. There are dozens more. Here’s a
list, courtesy of Elizabeth Castro: http://www.elizabethcastro.com/html/
extras/entities.html.

Deprecated and Obsolete Elements
and Attributes
A deprecated element or attribute is one that you shouldn’t use but that
browsers still support for backward-compatibility reasons. Most of the
deprecated items are presentational in nature and have been replaced by
CSS. An obsolete element or attribute is one that you should not use and
that browsers should not support.

The deprecated elements in X/HTML are applet, basefont, center, dir,
font, isindex, menu, s, strike, and u.

The goal of this book is to be a practical reference to standards-based
coding today and into the future. To that end, I deliberately left out
obsolete and deprecated elements and obsolete attributes, since you
shouldn’t use them anyway. Similarly, I omitted proprietary (that is,
nonstandard) elements that certain browsers support but that aren’t
part of any HTML specification, either final or in the works.

However, throughout Parts 2 (especially) and Part 3, I do note deprecated
attributes and what you should use instead, which usually means using
CSS to replace a presentational attribute. I also note elements and attri-
butes that are valid in X/HTML but not in HTML5 (they’re obsolete).

http://www.elizabethcastro.com/html/extras/entities.html
http://www.elizabethcastro.com/html/extras/entities.html

ptg

Part 2

This part of the book covers all nondeprecated elements that are shared
among HTML 4, XHTML 1, and HTML5 (though some are obsolete in
HTML5, as noted). Elements unique to HTML5 are covered in Part 3.

In some cases, an already existing element is different in HTML5, whether
it’s the element’s meaning, the availability of an attribute, or the addition
of new attributes. I note these differences throughout. In particular, keep
an eye on the “Attributes in Detail” sections and the HTML5 boxes at the
end of relevant entries. Each box details different uses and/or attributes
for the element, allowing you to understand their application in HTML5
at a glance.

HTML Elements and
Guidance

ptg

Chapter 2: Primary Structure and Sections . 27

Chapter 3: Document Head . 43

Chapter 4: Lists . 69

Chapter 5: Text . 93

Chapter 6: Embedded Content (Images and Objects) 141

Chapter 7: Forms . 157

Chapter 8: Tabular Data . 185

Chapter 9: Scripting . 203

Chapter 10: Frames . 213

Part 2 Contents

ptg

The elements in this chapter represent an HTML document’s high-level
structural and outline components. Some are essential (after all, you
can’t write an HTML document without the html element), while others
are either used sparingly (the hr element) or have seen their usage
decline in HTML5 (the div element).

This chapter is a counterpart to Chapter 11, which describes related
elements unique to HTML5. If you’re writing X/HTML documents, then
you don’t need to hop on over there. But, if you’re writing HTML5, then
this chapter and Chapter 11 combine to detail all the primary structural
and sectioning elements at your disposal.

Primary Structure
and Sections

2

ptg

Part 2: HTML Elements and Guidance28

address
Author contact information

Syntax <address></address>

Attributes Core, I18n, Events, HTML5 Only: Global

Description
address is one of the most misleading elements by name. You’d logi-
cally think it’s for marking up a postal address, but it isn’t (except for one
circumstance described in a little bit). In fact, surprisingly, there isn’t an
HTML element explicitly designed for that.

Instead, address defines contact information for the author of an HTML
document or part of a document. It typically goes at either the beginning
or, more often, the end of a page. However, if a section of a page has an
author, place the address in context of that section.

Most of the time, contact information takes the form of the author’s
e-mail address or a link to a page with more contact information.

Example:

<address>

Page maintained by

➥ Taylor Rose and <a href=”/contact-us/katherine-whitney.

➥ html”>Katherine Whitney.

</address>

Browsers typically render address content in italics by default, like this:

Page maintained by Taylor Rose and Katherine Whitney.

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 29

Additionally, the contact information could very well be the document
author’s postal address, in which case marking it up with address would
be valid. But, if you’re creating the Contact Us page for your business and
want to include your office locations, it would be incorrect to code those
with address. So, it’s the context that matters.

HTML5 and the address Element
In HTML5, address pertains to the nearest article element ancestor,
or the body if no article is present. It’s customary to place address in
an HTML5 footer element when documenting author contact infor-
mation for the page at large.

An address in an article provides contact information for the
author of that article within a document. Please see the article
entry in Chapter 11 for an example.

HTML5 stipulates that address may contain author contact informa-
tion only, not anything else such as the document or article’s last
modified date. Additionally, HTML5 forbids nesting any of the follow-
ing elements inside address: h1–h6, address, article, aside, footer,
header, hgroup, nav, and section.

ptg

Part 2: HTML Elements and Guidance30

body
Document content container

Syntax <body>
. . . [document content] . . .

</body>

Attributes Core, I18n, Events, onload, onunload, HTML5 Only: Global,
onafterprint, onbeforeprint, onbeforeunload, onblur, onerror,
onfocus, onhashchange, onmessage, onoffline, ononline, onpagehide,
onpageshow, onpopstate, onredo, onresize, onstorage, onundo

Description
The body element contains all code related to a page’s content and may
also contain one or more script blocks. body is required for every HTML
document except one that defines framesets, in which case it can appear
only inside the noframes element. (Please see Chapter 10.) Only one body
is allowed per HTML document.

Example:

. . .

</head>

<body>

<h1>All about <code>body</code></h1>

<p>The <code>body</code> element contains your page’s

content, which may include nearly every

element.</p>

. . .

</body>

</html>

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 31

body may contain text, images, objects, scripts, tables, and forms—in
short, nearly every HTML element, whether block-level or inline. However,
if the DOCTYPE is Strict (which I recommend), each inline element must
be contained in a block-level element. For instance, the code and em
elements in the example could not sit directly inside body because both
are inline elements.

Attributes in Detail
In addition to the common events, body has two special event attributes
(see the “HTML5 and the body Element” box, too):

n onload=”script”: Fires when all the document’s content has finished
loading. This includes all images, objects, and scripts (whether they are
local to the site or external, third-party scripts). Consequently, the time
it takes for onload to fire can vary greatly from page to page depend-
ing on the content, how content is served, network latency, a user’s
browser cache settings, and more.

n onunload=”script”: Fires when the user leaves the document, such as
when navigating to another page via a link.

Deprecated Attributes
The following attributes are all presentational in nature, so use CSS
instead to achieve the equivalent effect.

n alink: Obsolete in HTML5. This color appears as the user is selecting
a link. Use the CSS a:active pseudo-selector to define the active link
color instead.

n background: Obsolete in HTML5. Use the CSS background-image prop-
erty to define the body background image instead.

n bgcolor: Obsolete in HTML5. Use the CSS background-color property
to define the body background color instead.

ptg

Part 2: HTML Elements and Guidance32

n link: Obsolete in HTML5. Use the CSS a:link pseudo-selector to define
the unvisited (that is, default) link color instead.

n text: Obsolete in HTML5. Use the CSS color attribute to define the
default text color instead.

n vlink: Obsolete in HTML5. Use the CSS a:visited pseudo-selector to
define the visited link color instead.

HTML5 and the body Element
HTML5 introduces several new event attributes to body. As with other
events, it’s best to apply these unobtrusively with JavaScript rather
than include them in your HTML.

Attributes in Detail

n onafterprint=”script”: This fires when the browser finishes print-
ing the document.

n onbeforeprint=”script”: This fires when the browser’s Print func-
tionality is engaged, such as when you choose Print from the
menu but before the document has printed.

n onbeforeunload=”script”: This fires just before the document
unloads, which happens each time a user submits a form or navi-
gates away from the current page. Use it if you want users to con-
firm they intend to leave the page.

n onblur=”script”: This fires when body loses focus, such as when
the user clicks the mouse pointer outside body. It’s the opposite of
onfocus.

n onerror=”script”: This fires when an uncaught runtime script
error occurs.

n onfocus=”script”: This fires when the body achieves focus after
having lost it. It’s the opposite of onblur.

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 33

HTML5 and the body Element (continued)

n onhashchange=”script”: This fires when only the hash (#) portion
of the URL changes. For instance, if you are currently browsing
http://www.yourdomain.com/meteor-showers.html and select a
link that anchors to the #photos id elsewhere on the page, the
URL changes to http://www.yourdomain.com/meteor-showers.
html#photos and onhashchange fires if it’s defined. It fires again if
you navigate to another anchor or back to the initial state that had
no hash.

n onmessage=”script”: This fires when a document receives a
message via server-sent events, Web sockets, cross-document
messaging, and channel messaging. For example, HTML5’s Cross-
Document Messaging allows two documents to communicate
regardless of their source domains. onmessage fires when one doc-
ument receives a message from the other one via postMessage().
A full discussion of messaging is beyond the scope of this book.

n onoffline=”script”: This fires when the navigator.onLine attri-
bute value changes from true to false, which occurs when the
browser cannot contact the network upon a user-initiated or
programmatic request for a remote page or file.

n ononline=”script”: The opposite of onoffline, this fires when the
value of navigator.onLine changes from false to true.

n onpagehide=”script”: This fires when navigating from a browser’s
session history entry, which is an individual URL and/or state
object plus other contextual information. Loosely put, the session
history represents the full set of pages accessed during a browsing
session.

n onpageshow=”script”: The opposite of onpagehide, this fires when
navigating to a browser’s session history entry.

(continues on next page)

http://www.yourdomain.com/meteor-showers.html
http://www.yourdomain.com/meteor-showers.html#photos
http://www.yourdomain.com/meteor-showers.html#photos

ptg

Part 2: HTML Elements and Guidance34

HTML5 and the body Element (continued)

n onpopstate=”script”: HTML5 allows you to manipulate the ses-
sion history by recording an interface state (a state object) in the
history programmatically. onpopstate fires when navigating to
a browser’s session history entry that is a state object. Please see
https://developer.mozilla.org/en/DOM/window.onpopstate and
https://developer.mozilla.org/en/DOM/Manipulating_the_browser_
history for more information and examples.

n onredo=”script”: HTML5’s undo/redo history functionality is just
one of its features that makes it easier to build robust Web appli-
cations. The concept is similar to the undo and redo features in
word processors and other software. onredo fires when a redo
operation takes place on an undo object. The specifics are beyond
the scope of this book.

n onresize=”script”: This fires when the body changes size.

n onstorage=”script”: The W3C’s Web Storage API (http://www.
w3.org/TR/webstorage/), also referred to as “DOM Storage,” allows
you to store a large amount of data securely in the browser.
onstorage fires when a storage event occurs. The specifics of Web
Storage are beyond the scope of this book. Please see http://dev.
opera.com/articles/view/web-storage/ for more information.

n onundo=”script”: This is the opposite of onredo, firing when an
undo operation takes place on an undo object.

Also, when common events onblur, onerror, onfocus, and onload
appear on body, they expose the same-named event handlers of the
Window object. Please see “Attributes” in Chapter 1 for more details
about these four events.

http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/webstorage/
http://dev.opera.com/articles/view/web-storage/
http://dev.opera.com/articles/view/web-storage/
https://developer.mozilla.org/en/DOM/window.onpopstate
https://developer.mozilla.org/en/DOM/Manipulating_the_browser_history
https://developer.mozilla.org/en/DOM/Manipulating_the_browser_history

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 35

div
A generic container

Syntax <div></div>

Attributes Core, I18n, Events, HTML5 Only: Global

Description
The div element serves as a generic, block-level container and has no
semantic meaning. As is the case with any meaningless element, use div
only when a proper semantic choice doesn’t exist.

Developers typically use it in X/HTML as the wrapper around most
primary blocks of content and then control the width, placement, and
other presentation characteristics with CSS. div may contain both block-
level and inline elements, including other divs.

Example:

<body>

<div id=”container”>

<div id=”header”> . . . </div>

<div id=”content”>

<div id=”main”> . . . </div>

<div id=”sidebar”> . . . </div>

</div>

<div id=”footer”> . . . </div>

</div>

</body>

note div’s cousin is the span element, which is a generic, inline container
with no semantic meaning.

ptg

Part 2: HTML Elements and Guidance36

Deprecated Attributes
n align: Obsolete in HTML5. align is presentational in nature, so instead

use the CSS text-align property (with a value of center, justify,
left, or right) to align a div’s content.

HTML5 and the div Element
You’ll find fewer instances to use div in HTML5 because that version
of the language contains several containers that do have meaning,
such as article, aside, header, footer, nav, and section (see Chapter
11). Use div only when a semantic element isn’t required.

h1, h2, h3, h4, h5, h6
A heading

Syntax <h1></h1>
<h2></h2>
<h3></h3>
<h4></h4>
<h5></h5>
<h6></h6>

Attributes Core, I18n, Events, HTML5 Only: Global

Description
The h1–h6 elements represent content headings of varying degrees of
importance. The h1 is the most important, and the h6 is the least. Each
heading describes the content or functionality that follows, whether it’s

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 37

an article, a sign-up form, a module with a group of links, the title above
an embedded video, and so on.

Your h1–h6 headings are among the most important elements in any
HTML document, because they are integral to defining your page’s
outline. Plan them without regard for how you want them to look; focus
on what heading hierarchy is appropriate for your content. This benefits
both SEO and accessibility.

Search engines weigh your headings heavily, particularly the likes of h1.
Screen reader users often navigate a page by headings, too, because it
allows them to quickly assess a page’s content without having to listen
through every piece of content.

Opinions vary concerning whether it’s appropriate to skip a heading
level in a document—to move from h1 to h3 within a particular content
area, for instance. Most people in the community think you should not
skip a level, a view I share. Having said that, there is no firm rule in either
X/HTML or HTML5 about this.

By default, headings typically render at a size comparable to its impor-
tance and in bold. However, as previously noted, don’t use a particular
heading level just because you want it to look a certain way. You can
control all of that with CSS.

Example:

<h1>This is a heading level one</h1>

<h2>This is a heading level two</h2>

<h3>This is a heading level three</h3>

<h4>This is a heading level four</h4>

<h5>This is a heading level five</h5>

<h6>This is a heading level six</h6>

ptg

Part 2: HTML Elements and Guidance38

Please note that the following rendering isn’t to scale.

This is a heading level one
This is a heading level two
This is a heading level three
This is a heading level four
This is a heading level five
This is a heading level six

Deprecated Attributes
n align: Obsolete in HTML5. align is presentational in nature, so instead

use the CSS text-align property (with a value of center, justify,
left, or right) to align a heading’s content.

tip You are allowed to use more than h1 per page, though it isn’t common
to do so and is mostly discouraged in X/HTML because the use cases

are limited. Google’s Matt Cutts has gone on record saying Google allows it
without a search ranking penalty as long as it’s content-appropriate and within
reason. However, you should use h1 more often in an HTML5 document. See the
“HTML5 and the h1–h6 Elements” box.

tip You’ll often see the h1 used to wrap a site’s logo, but I don’t recom-
mend this practice in X/HTML. Save your h1 for the main heading (or

two) within your content.

HTML5 and the h1–h6 Elements
HTML5’s article, aside, nav, section, and hgroup elements greatly
impact the way in which you use h1–h6 headings. Please see the
“HTML5’s Document Outline” section and the elements’ entries in
Chapter 11.

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 39

hr
A horizontal rule

Syntax <hr> or <hr />

Attributes Core, I18n, Events, HTML5 Only: Global

Description
The hr element does not contain any content; it renders as a horizontal
rule, acting as a separator.

Example:

<p>This is a paragraph.</p>

<hr />

<p>This is another paragraph.</p>

By default, user agents typically render it as a two-color (gray), 2-pixel-
high bar that extends the full width of the content container in which it
sits. The space above and below an hr tends to vary among browsers.

This is a paragraph.

This is another paragraph.

Deprecated Attributes
n align: Obsolete in HTML5. Use the CSS width and, optionally, margin

properties to dictate the alignment of an hr relative to the content
around it.

n noshade: Obsolete in HTML5. This Boolean attribute, when present,
turns off the default “groove” appearance of an hr by rendering the

ptg

Part 2: HTML Elements and Guidance40

two lines in one color instead of two. Use CSS instead, such as
hr { border: 1px solid #999; }, where #999 represents the color.

n size: Obsolete in HTML5. Use the CSS height property to dictate the
size instead.

n width: Obsolete in HTML5. Use the CSS width property to dictate the
width instead.

HTML5 and the hr Element
HTML5 gives the hr more context by redefining it as “a paragraph-
level thematic break, e.g. a scene change in a story, or a transition to
another topic within a section of a reference book.”

html
Document root element

Syntax <html></html>

Attributes I18n, HTML5 Only: Global, manifest

Description
The html element is the root element of every HTML document; all
other elements are contained within it. The opening html tag should be
preceded by a valid DOCTYPE.

Example (typical HTML 4 Strict document):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

ptg

Part 2: HTML Elements and Guidance Chapter 2: Primary Structure and Sections 41

<html lang="en">

<head>

. . .

</head>

<body>

. . .

</body>

</html>

The lang attribute sets the base language for the entire document. The
structure remains the same as the example for other versions of HTML,
except for the DOCTYPE and, in some cases, the attributes on html. Please
see Chapter 1 for more information about lang, the html element’s other
attributes, and DOCTYPE options.

Deprecated Attributes
n version: Obsolete in HTML5. Do not use this attribute since it provides

redundant information as the DOCTYPE regarding the required DTD
version.

HTML5 and the html Element
If the previous example had been an HTML5 document, everything
would be the same except the DOCTYPE would be <!DOCTYPE html>.

Attributes in Detail

n manifest=”URL”: This optional attribute contains a valid non-
empty URL that points to the document’s application cache mani-
fest. HTML5 provides the means to run offline Web applications

(continues on next page)

ptg

Part 2: HTML Elements and Guidance42

HTML5 and the html Element (continued)

(application can mean a robust application or just a handful of
HTML pages; it doesn’t matter). The application cache manifest
lists the files an application needs to operate when disconnected
from the network. The browser saves a copy of the files when
you access the site online. Details about offline Web applications
are beyond the scope of this book, but you specify the attribute
like this:

<html manifest=”myapplication.manifest”>

Please note that a base element has no effect on resolving a rela-
tive URL in the manifest attribute since manifest is processed
before base appears.

ptg

An HTML document’s head element contains important information
about the page, links to external resources such as style sheets, and
embedded styles, when necessary. Plus, what you include in your page’s
head impacts search engine optimization (SEO).

Each of the elements described in this chapter may appear only in the
head, except style, which has an exception in HTML5.

note The script element may also appear in the head; however, it’s best 
to include it at the end of your page just before the </body> end tag 

whenever possible.

Document Head

3

ptg

Part 2: HTML Elements and Guidance44

base
Document’s base URI

Syntax   <head>
 <base href=""> or <base href="" />
</head>

Attributes  href, target, HTML5 Only: Global

Description
The base element defines the page’s absolute URI from which relative
paths to external resources are resolved. (External resources include
assets such as images, JavaScript files, and style sheets, as well as links
to other pages and paths to server-side scripts that process forms.) base
must be defined in the document head before any element that calls
upon an external resource, and there can be only one base element per
page. If base is not defined, the page’s base URI defaults to the current
page. Most pages on the Web don’t define base because the default
behavior is what is desired.

Attributes in Detail
n href="uri ": Defines the document’s base absolute URI.

n target: Used to set the base target for links and form actions in docu-
ments with frame or iframe elements. Please see the frame entry in
Chapter 10 for more information.

It’s important to note that base impacts the URIs only for the page in
which it appears. For instance, if you define background-image:
url(../img/arrow.png) in an external style sheet that is loaded by a
page with base defined, the path to the image is unaffected. Similarly,

ptg

Part 2: HTML Elements and Guidance Chapter 3: Document Head 45

base in a parent document does not affect the paths within an iframe’s
document. Lastly, the object element’s codebase attribute takes prece-
dence over base.

The easiest way to understand how base works is to see examples
both with and without it. Let’s say you’ve created the following page at
http://www.myvacationpics.com/2009/.

Example 1 (without base defined):

<head>

. . .

<link rel="stylesheet" href=”../css/global.css”

type="text/css" />

</head>

<body>

. . .

<p>

<img src=”image/kauai/thumbnail_volcano_01.jpg”

width=”400” height=”300” alt=”Kauai volcano” />

Kauai Volcano Pics

</p>

. . .

</body>

Example 1 is your typical HTML page—the paths to the external assets
are exactly how they appear in the code. That is, the paths to the style
sheet, the volcano image, and the page to view more pictures are relative
to the HTML page’s location, which is in the /2009/ directory.

Now, let’s apply a base value while leaving the rest of the code exactly as
it was in Example 1. Remember, you aren’t moving the page to a different
folder, just adding base to the page.

http://www.myvacationpics.com/2009/

ptg

Part 2: HTML Elements and Guidance46

Example 2 (with base defined):

<head>

. . .

<base href=”http://www.myvacationpics.com/2010/” />

<link rel="stylesheet" href=”../css/global.css”

type="text/css" />

</head>

<body>

. . .

<p>

<img src=”image/kauai/thumbnail_volcano_01.jpg”

width=”400” height=”300” alt=”Kauai volcano” />

Kauai Volcano Pics

</p>

. . .

</body>

With the base defined in Example 2, all URIs in the page are now relative
to the base href value, meaning the page treats them as if it’s in the
/2010/ directory even though it still lives in /2009/. Here are the paths
as they appear in the code and where the page looks for them now that
they resolve to new locations:

n ../css/global.css resolves to http://www.myvacationpics.com/css/
global.css (this didn’t change because of the path).

n image/kauai/thumbnail_volcano_01.jpg now resolves to http://
www.myvacationpics.com/2010/image/kauai/thumbnail_volcano_01.
jpg (instead of http://www.myvacationpics.com/2009/image/kauai/
thumbnail_volcano_01.jpg, as in Example 1).

n volcanoes/kauai.html resolves to http://www.myvacationpics.
com/2010/volcanoes/kauai.html (instead of http://www.myvacation
pics.com/2009/volcanoes/kauai.html, as in Example 1).

http://www.myvacationpics.com/css/global.css
http://www.myvacationpics.com/css/global.css
http://www.myvacationpics.com/2010/image/kauai/thumbnail_volcano_01.jpg
http://www.myvacationpics.com/2010/image/kauai/thumbnail_volcano_01.jpg
http://www.myvacationpics.com/2010/image/kauai/thumbnail_volcano_01.jpg
http://www.myvacationpics.com/2009/image/kauai/thumbnail_volcano_01.jpg
http://www.myvacationpics.com/2009/image/kauai/thumbnail_volcano_01.jpg
http://www.myvacationpics.com/2010/volcanoes/kauai.html
http://www.myvacationpics.com/2010/volcanoes/kauai.html
http://www.myvacationpics.com/2009/volcanoes/kauai.html
http://www.myvacationpics.com/2009/volcanoes/kauai.html

ptg

Part 2: HTML Elements and Guidance Chapter 3: Document Head 47

head
Information about document

Syntax   <head>
. . .
</head>

Attributes  I18n, profile*, HTML5 Only: Global

Description
The head element is required in each HTML document. It houses a hand-
ful of other elements that provide information about the page, such
as the character encoding, title, links to style sheets, and metadata for
search engines. It does not contain page content (as the body element
does) that user agents generally render, though they may surface the
information in other ways (such as with title on the title bar).

The elements that head may contain are base, link, meta, script, style,
and title. All are defined in this chapter except script, which is covered
in Chapter 9. Also, all of these except script (and style in HTML5) may
appear only in the head.

The head immediately follows the DOCTYPE and the html element, as
shown in the example.

Example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"

lang="en">

<head>

(continues on next page)

ptg

Part 2: HTML Elements and Guidance48

<title>Sunny renewable green energy services - Solar

Panels Galore</title>

<meta http-equiv="Content-Type" content="text/html;

charset=utf-8" />

. . . [other meta elements] . . .

<link rel="stylesheet" type="text/css"

href="/common/css/base.css" />

</head>

<body>

. . .

Attributes in Detail
n profile="uri": *Obsolete in HTML5. As I mention in this chapter’s entry

for the meta element, you may create your own meta elements simply
by including them in your page. You may also create a metadata
profile, which is documentation of a metadata standard, and point to
it with the profile attribute on the head. It’s a way of informing user
agents that some of your meta elements are derived from that profile.
Including the profile attribute does not change the behavior of the
meta elements, however. A full discussion of profiles is beyond the
scope of this book, but you can read more at http://www.w3.org/TR/
html401/struct/global.html#profiles. Also, two such profiles are Dublin
Core (http://dublincore.org/documents/dces/ and http://dublincore.org/
resources/faq/) and XFN (http://gmpg.org/xfn/11 and http://micro
formats.org/wiki/xfn).

http://www.w3.org/TR/html401/struct/global.html#profiles
http://www.w3.org/TR/html401/struct/global.html#profiles
http://dublincore.org/documents/dces/
http://dublincore.org/resources/faq/
http://dublincore.org/resources/faq/
http://gmpg.org/xfn/11
http://microformats.org/wiki/xfn
http://microformats.org/wiki/xfn

http://wiki.whatwg.org/wiki/MetaExtensions

https://developer.mozilla.org/en/Link_prefetching_FAQ
https://developer.mozilla.org/en/Link_prefetching_FAQ

http://www.w3.org/TR/2009/CR-css3-mediaqueries-20090915/#syntax
http://www.w3.org/TR/2009/CR-css3-mediaqueries-20090915/#syntax

http://www.w3.org/International/tutorials/tutorial-char-enc/
http://www.w3.org/International/tutorials/tutorial-char-enc/

http://www.htmlfiver.com/extras/meta/
http://www.htmlfiver.com/extras/meta/

http://wiki.whatwg.org/wiki/MetaExtensions
http://wiki.whatwg.org/wiki/MetaExtensions

http://24ways.org/2009/incite-a-riot

http://www.w3.org/TR/CSS21/generate.html#lists

http://www.w3.org/TR/2009/CR-css3-mediaqueries-20090915/#syntax
http://www.w3.org/TR/2009/CR-css3-mediaqueries-20090915/#syntax

http://www.htmlfiver.com/extras/abbr-acronym/

http://www.htmlfiver.com/extras/abbr-acronym/

http://www.htmlfiver.com/extras/bdo/
http://www.w3.org/International/tutorials/bidi-xhtml/
http://www.w3.org/International/tutorials/bidi-xhtml/

http://www.w3.org/TR/html4/types.html#type-datetime
http://www.w3.org/TR/html4/types.html#type-datetime
http://www.htmlfiver.com/extras/del-ins/

http://monc.se/kitchen/129/rendering-quotes-with-css
http://monc.se/kitchen/129/rendering-quotes-with-css
http://juicystudio.com/article/fixing-ie-quotes.php
http://juicystudio.com/article/fixing-ie-quotes.php

http://www.alistapart.com/articles/flashembedcagematch/
http://code.google.com/p/swfobject/wiki/documentation

http://www.alistapart.com/articles/flashembedcagematch/
http://www.alistapart.com/articles/flashembedcagematch/

http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-262.pdf
http://www.ecmainternational.org/publications/files/ECMA-ST/ECMA-262.pdf

http://www.htmlfiver.com/extras/inputs/

http://www.htmlfiver.com/extras/tables/

http://www.w3.org/TR/html4/struct/tables.html#multidimension
http://www.w3.org/TR/html4/struct/tables.html#multidimension

http://www.stevesouders.com
http://code.google.com/closure/compiler/
http://closure-compiler.appspot.com
http://developer.yahoo.com/yui/compressor/
http://refresh-sf.com/yui/

http://www.htmlfiver.com/html5-browser-support/

http://www.w3.org/TR/html4/present/frames.html

http://www.w3.org/TR/html5/text-level-semantics.html#attr-iframe-sandbox
http://www.w3.org/TR/html5/text-level-semantics.html#attr-iframe-sandbox

http://www.w3.org/TR/html4/present/frames.html
http://www.w3.org/TR/html4/present/frames.html

http://www.htmlfiver.com/html5-browser-support/

http://gsnedders.html5.org/outliner/

http://html5.validator.nu/

https://addons.mozilla.org/en-US/firefox/addon/6812
https://addons.mozilla.org/en-US/firefox/addon/6812
http://en.wikipedia.org/wiki/Ruby_character

http://www.quirksmode.org/blog/archives/2009/04/making_time_saf.html
http://www.quirksmode.org/blog/archives/2009/04/making_time_saf.html

http://www.htmlfiver.com/html5-browser-support/
http://www.htmlfiver.com/html5-browser-support/

http://www.canvasdemos.com/
https://developer.mozilla.org/en/Canvas_tutorial
http://dev.opera.com/articles/view/html-5-canvas-the-basics/
http://dev.opera.com/articles/view/html-5-canvas-the-basics/
http://dev.opera.com/articles/view/blob-sallad-canvas-tag-and-javascrip/
http://dev.opera.com/articles/view/blob-sallad-canvas-tag-and-javascrip/
http://code.google.com/p/explorercanvas/

http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-source-element
http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#the-source-element
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox
https://developer.mozilla.org/En/Using_audio_and_video_in_Firefox

http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2009-June/020620.html
http://lists.whatwg.org/htdig.cgi/whatwg-whatwg.org/2009-June/020620.html

http://www.htmlfiver.com/html5-browser-support/

http://camendesign.com/code/video_for_everybody
http://camendesign.com/code/video_for_everybody

http://docs.google.com/View?id=dch3zh37_0cf8kc8c4

http://dev.w3.org/html5/html-device/

	Contents
	Introduction
	Part 1: HTML Basics
	Chapter 1: HTML Basics

	Part 2: HTML Elements and Guidance
	Chapter 2: Primary Structure and Sections
	Chapter 3: Document Head
	Chapter 4: Lists
	Chapter 5: Text
	Chapter 6: Embedded Content (Images and Objects)
	Chapter 7: Forms
	Chapter 8: Tabular Data
	Chapter 9: Scripting
	Chapter 10: Frames

	Part 3: HTML5 Elements and Guidance
	Chapter 11: Primary Structure and Sections
	Chapter 12: Text
	Chapter 13: Embedded Content (Images, Media, and More)
	Chapter 14: Forms
	Chapter 15: Interactive Elements

	Appendix: Alphabetical HTML Elements Page Listing
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

